پیشبینی مدول برجهندگی خاکهای ریزدانه با استفاده از شبکه عصبی مصنوعی، ماشین بردار پشتیبان و سیستم استنتاج تطبیقی عصبی-فازی بهینهسازیشده با الگوریتم ازدحام ذرات
نویسندگان
چکیده مقاله:
مدول برجهندگی خاک بستر ازجمله پارامترهای بسیار مهم در تحلیل و طراحی روسازی است. این پارامتر هم در روشهای تجربی (مانند اشتو 1993) و هم در روشهای مکانیستیک-تجربی (مانند MEPDG) به عنوان اصلیترین پارامتر برای بیان مقاومت و خصوصیات مکانیکی خاک بستر مورداستفاده قرار میگیرد. برای تعیین این پارامتر نیاز است تا آزمایش بارگذاری سه محوری دینامیک تحت تنشهای محدودکننده و تنشهای انحرافی مختلف بر روی خاک انجام شود که انجام این آزمایشها بسیار وقتگیر و پرهزینه است. در این مقاله عملکرد سه روش ترکیبی هوش محاسباتی شامل شبکه عصبی مصنوعی بهینهسازی شده با الگوریتم ازدحام ذرات (ANN-PSO)، ماشین بردار پشتیبان بهینهسازی شده با الگوریتم ازدحام ذرات (SVM-PSO) و سیستم استنتاج تطبیقی عصبی-فازی بهینهسازی شده با الگوریتم ازدحام ذرات (ANFIS-PSO) بهمنظور پیشبینی مدول برجهندگی مصالح خاک بستر ریزدانه مورد ارزیابی قرار گرفته است و نتایج این سه روش با یکدیگر مقایسه گردیده است. در کلیه این مدلها درصد عبوری از الک نمره 200، حد روانی، شاخص خمیری، درصد رطوبت بهینه، درصد رطوبت، درجه اشباع، مقاومت فشاری تکمحوری، تنش محدودکننده و تنش انحرافی به عنوان ورودی و مدول برجهندگی به عنوان پارامتر خروجی در نظر گرفته شد. نتایج این تحقیق نشان میدهد که روش ANN-PSO بیشترین دقت را در پیشبینی مدول برجهندگی خاکهای ریزدانه فراهم میسازد. ضریب رگرسیون حاصل از این روش برای مجموع کل دادهها برابر با 992/0 است و این روش در اکثر موارد مقدار مدول برجهندگی را با درصد خطای کمتر از 20 درصد پیشبینی میکند. ضریب رگرسیون حاصل از دو روش SVM-PSO وANFIS-PSO به ترتیب برابر با 989/0 و 951/0 است. نتایج این تحقیق همچنین نشان داد که درصد مصالح عبوری از الک نمره 200 بیشترین تأثیر و پارامتر تنش انحرافی کمترین تأثیر را بر روی مدول برجهندگی مصالح خاکی ریزدانه دارند.
منابع مشابه
پیش بینی تبخیر- تعرق پتانسیل ماهانه با استفاده از مدلهای ماشین بردار پشتیبان، برنامهریزی ژنتیک و سیستم استنتاج عصبی – فازی
چکیده علیرغم اهمیت تبخیر-تعرق در برنامهریزی و مدیریت منابع آبی، وابستگی آن به مولفههای اقلیمی از یکسو و تاثیرپذیری این مولفهها از یکدیگر از سویی دیگر تخمین تبخیر-تعرق را دشوار ساخته است. به همین منظور، در این پژوهش، به بررسی امکان پیشبینی این مولفهی مهم در استان سیستان و بلوچستان با استفاده از مدلهای فراابتکاری از قبیل سیستم استنتاج عصبی – فازی، برن...
متن کاملمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
متن کاملمدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان
امروزه از بتن غلتکی در ساخت سدها و روسازی راهها استفاده میشود و طی سالهای اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهمترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری میباشد که افزایش آن میتواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیلدهنده آن سبب مشک...
متن کاملتخمین عملکرد کمی و کیفی نیشکر با استفاده از شبکه فازی- عصبی تطبیقی بهبود یافته با الگوریتم بهینهسازی ازدحام ذرات
متغیرهای مختلفی بر عملکرد مزارع نیشکر تأثیرگذارند. با بررسی این متغیرها و تعیین میزان اثر هر یک از آنها میتوان به راهکارهایی بهمنظور افزایش بهرهوری مزارع نیشکر دست یافت. امروزه استفاده از یافتههای هوش مصنوعی و داده کاوی برای کمک به پیشبینی تولید محصول مورد توجه قرار گرفته است. هدف از این مقاله، معرفی روش هوشمند سیستم استنتاج فازی- عصبی تطبیقی و ترکیب این تکنیک با الگوریتم بهینهس...
متن کاملپیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره ویژه نامه روسازی
صفحات 159- 181
تاریخ انتشار 2018-01-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023